Stochastic Schrödinger equations with coloured noise
نویسندگان
چکیده
منابع مشابه
Stochastic Schrödinger equations with coloured noise
A natural non-Markovian extension of the theory of white noise quantum trajectories is presented. In order to introduce memory effects in the formalism an Ornstein-Uhlenbeck coloured noise is considered as the output driving process. Under certain conditions a random Hamiltonian evolution is recovered. Moreover, non-Markovian stochastic Schrödinger equations which unravel non-Markovian master e...
متن کاملStochastic Nonlinear Schrödinger Equations with Linear Multiplicative Noise: Rescaling Approach
We prove well-posedness results for stochastic nonlinear Schrödinger equations with linear multiplicative Wiener noise including the non-conservative case. Our approach is different from the standard literature on stochastic nonlinear Schrödinger equations. By a rescaling transformation we reduce the stochastic equation to a random nonlinear Schrödinger equation with lower order terms and treat...
متن کاملStochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered. The coefficients are assumed to have linear growth. We do not impose coercivity conditions on coefficients. A novel method of proof for establishing existence and uniqueness of the mild solution is proposed. Examples on stochastic partial differentia...
متن کاملStochastic Equations with Boundary Noise
We study the wellposedness and pathwise regularity of semilinear non-autonomous parabolic evolution equations with boundary and interior noise in an Lp setting. We obtain existence and uniqueness of mild and weak solutions. The boundary noise term is reformulated as a perturbation of a stochastic evolution equation with values in extrapolation spaces.
متن کاملStochastic differential equations with fractal noise
Stochastic differential equations in R with random coefficients are considered where one continuous driving process admits a generalized quadratic variation process. The latter and the other driving processes are assumed to possess sample paths in the fractional Sobolev space W β 2 for some β > 1/2. The stochastic integrals are determined as anticipating forward integrals. A pathwise solution p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPL (Europhysics Letters)
سال: 2010
ISSN: 0295-5075,1286-4854
DOI: 10.1209/0295-5075/91/24001